Presented By O’Reilly and Intel AI
Put AI to work
April 10-11, 2018: Training
April 11-13, 2018: Tutorials & Conference
Beijing, CN

高性价比AI产品在IoT设备上的实现

此演讲使用中文 (This will be presented in Chinese)

Shaoshan Liu (PerceptIn)
16:2017:00 Thursday, April 12, 2018
实施人工智能 (Implementing AI)
Location: 多功能厅5A+B(Function Room 5A+B)
Secondary topics:  AI应用的硬件、软件栈(Hardware and Software stack for AI applications), 制造业与工业自动化 (Manufacturing and Industrial Automation)

必要预备知识 (Prerequisite Knowledge)

一点物联网及人工智能背景知识就足够了

您将学到什么 (What you'll learn)

将机器人能力带入物联网设备

描述 (Description)

近年来,越来越多的物联网产品出现在市场上,它们采集周围的环境数据,并使用传统的机器学习技术理解这些数据。一个例子是Google的Nest恒温器,采用结构化的方式记录温度数据,并通过算法来掌握用户的温度偏好和时间表。然而,其对于非结构化的多媒体数据,例如音频信号和视觉图像则显得无能为力。

新兴的物联网设备采用了更加复杂的深度学习技术,通过神经网络来探索其所处环境。例如,Amazon Echo可以理解人的语音指令,通过语音识别,将音频信号转换成单词串,然后使用这些单词来搜索相关信息。最近,微软的Windows物联网团队发布了一个基于面部识别的安全系统,利用到了深度学习技术,当识别到用户面部时能够自动解开门锁。

物联网设备上的深度学习应用通常具有苛刻的实时性要求。例如,基于物体识别的安全摄像机为了能及时响应房屋内出现的陌生人,通常需要小于500毫秒的检测延迟来捕获和处理目标事件。消费级的物联网设备通常采用云服务来提供某种智能,然而其所依赖的优质互联网连接,仅仅在部分范围内可用,并且往往需要较高的成本,这对设备能否满足实时性要求提出了挑战。与之相比,直接在物联网设备上实现深度学习或许是一个更好的选择,这样就可以免受连接质量的影响。然而,直接在嵌入式设备上实现深度学习是困难的。事实上,低功耗是移动物联网设备的主要特征,而这通常意味着计算能力受限,内存容量较小。在软件方面,为了减少内存占用,应用程序通常直接运行在裸机上,或者在包含极少量第三方库的轻量级操作系统上。而与之相反,深度学习意味着高性能计算,并伴随着高功耗。此外,现有的深度学习库通常需要调用许多第三方库,而这些库很难迁移到物联网设备。我们将讨论如何解决这些问题并使用CNN推理机在物联网设备上实现深度学习。

Photo of Shaoshan Liu

Shaoshan Liu

PerceptIn

Shaoshan Liu is the cofounder and chairman of PerceptIn, a company working on developing a next-generation robotics platform. Previously, he worked on autonomous driving and deep learning infrastructure at Baidu USA. Shaoshan holds a PhD in computer engineering from the University of California, Irvine.