O’REILLY、INTEL AI主办

English中文
将人工智能用起来
2019年6月18-21日
北京,中国

Analytics Zoo: Distributed TensorFlow and Keras on Apache Spark

此演讲使用中文 (This will be presented in Chinese)

Zhichao Li (Intel)
09:0012:30 Wednesday, June 19, 2019
实施人工智能 (Implementing AI)
Location: 多功能厅8A+B(Function Room 8A+B)

必要预备知识 (Prerequisite Knowledge)

  • A basic understanding of Python, Spark, TensorFlow, and Analytics Zoo

您将学到什么 (What you'll learn)

  • Learn distributed TensorFlow and Keras on Apache Spark

描述 (Description)

Analytics Zoo provides a unified analytics plus AI platform that seamlessly unites Spark, TensorFlow, Keras, and BigDL programs into an integrated pipeline; the entire pipeline can then transparently scale out to a large Hadoop/Spark cluster for distributed training or inference.

Zhichao Li explains how you can build and productionize deep learning applications for big data (e.g., transfer learning-based image classification, sequence-to-sequence prediction for precipitation nowcasting, neural collaborative filtering for recommendations, unsupervised time-series anomaly detection, etc.) using Analytics Zoo with real-world use cases (such as JD.com, MLSListings, World Bank, UnionPay, midea/KUKA, etc.)

Analytics Zoo 提供了一个统一的“分析+人工智能”平台。它无缝地把Spark、TensorFlow、Keras和BigDL统一进一个集成的管道。整个管道可以透明地扩展到大型Hadoop和Spark集群上,以进行分布式的训练和推断。

在本次辅导课中我们将通过使用来自Analytics Zoo的真实案例(如京东、MLSListings、世界银行、银联、midea / KUKA等),展示如何面向大数据构建和生产化部署深度学习应用,例如,基于迁移学习的图像分类、使用序列到序列模型进行降水预报、基于神经协同过滤的推荐、无监督时间序列异常检测等。

Photo of Zhichao Li

Zhichao Li

Intel

Zhichao Li is a senior software engineer at Intel focused on distributed machine learning, especially large-scale analytical applications and infrastructure on Spark. He’s also an active contributor to Spark. Previously, Zhichao worked in Morgan Stanley’s FX Department.

Zhichao Li是英特尔的高级软件工程师,专注于分布式机器学习,尤其是Spark上的大规模分析应用和基础架构。他也是一名Spark项目的积极贡献者。 在加入英特尔之前,Zhichao曾在摩根士丹利的外汇部工作。

Leave a Comment or Question

Help us make this conference the best it can be for you. Have questions you'd like this speaker to address? Suggestions for issues that deserve extra attention? Feedback that you'd like to share with the speaker and other attendees?

Join the conversation here (requires login)