O’REILLY、INTEL AI 主办
Put AI to work
2018年4月10-11日:培训
2018年4月11-13日:辅导课 & 会议
北京,中国
全部
实施人工智能 (Implementing AI)
HUA YANG (eBay)
The search engine has been a great platform for machine learning technologies, and the latest developments in AI open a new frontier, transforming the search engine into an AI platform. Hua Yang explores the deep learning and natural language understanding technologies used in eBay's ecommerce search platform.
英文讲话 (Presented in English)
Kristian Hammond (Narrative Science)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
Even as AI technologies move into common use, many enterprise decision makers remain baffled about what the different technologies actually do and how they can be integrated into their businesses. Rather than focusing on the technologies alone, Kristian Hammond provides a practical framework for understanding your role in problem solving and decision making.
实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Sangkeun Jung (SK Telecom)
Natural language understanding is a core technology for building natural interfaces such as AI speakers, chatbots, and smartphones. Sangkeun Jung offers an overview of a spoken dialog system and recently launched AI speaker, NUGU, and shares lessons learned building a commercially efficient and sustainable natural language understanding system.
实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Arsenii Mustafin (Fudan University)
Deep reinforcement learning is a thriving area and has wide applications in industry. Arsenii Mustafin shares his experience developing deep reinforcement learning applications on BigDL and Spark.
人工智能对商业及社会的影响 (Impact of AI on Business and Society), 企业人工智能 (AI in the Enterprise)
Yi Zhang (University of California, Santa Cruz | Rulai)
Yi Zhang offers a comprehensive overview of the technology landscape of the chatbot. You’ll learn best practices with regard to evaluating technologies, how to assemble the right team to manage the process, user-centered bot design principles, and risk management. Along the way, Yi share bot use cases within several industries.
模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Danny Lange (Unity Technologies)
Danny Lange demonstrates the role games can play in driving the development of reinforcement learning algorithms. Danny uses the Unity Engine with the ML-Agents toolkit as an example of how dynamic 3D game environments can be utilized for machine learning research.
企业人工智能 (AI in the Enterprise), 英文讲话 (Presented in English)
Simon Chan (Salesforce)
Building an end-to-end AI application in production is tremendously more complicated than simply doing algorithm modeling in a lab. Simon Chan explains how to cross the gap between AI research fantasy into real-world applications.
模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Haikal Pribadi (GRAKN.AI)
The relational database enabled the rise of BI systems, and NoSQL databases enabled web scale applications. Now, the future is cognitive computing. However, these systems process data that is more complex than before. Haikal Pribadi reviews the evolution of databases and explains where knowledge graphs and bases sit in this evolution. Could they serve as the next generation of databases?
实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Yishay Carmiel (IntelligentWire | Spoken Labs)
Yishay Carmiel offers an overview of neural models in speech applications, covering the dominant techniques and the elements that have contributed to the rapid progress. Yishay also looks to the future, examining which problems still remain and how far we are from solving them.
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Arthur Juliani (Unity Technologies)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
Recently, computers have been able to learn to play Atari games, Go, and first-person shooters at a superhuman level. Underlying all these accomplishments is deep reinforcement learning. Arthur Juliani offers a deep dive into reinforcement learning, from the basics using lookup tables and GridWorld all the way to solving complex 3D tasks with deep neural networks.
企业人工智能 (AI in the Enterprise), 英文讲话 (Presented in English)
Mark Hammond (Bonsai)
Mark Hammond dives into two case studies highlighting how deep reinforcement learning can be applied to real-world industrial applications.
主题演讲
Danny Lange (Unity Technologies)
Danny Lange offers an overview of deep reinforcement learning, an exciting new chapter in AI’s history that is changing the way we develop and test learning algorithms that can later be used in real life.
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
David Talby (Pacific AI)
To achieve high accuracy when reasoning about text, you generally need to understand specific languages, jargons, domain-specific documents, and writing styles. David Talby explains how to train custom word embeddings, named entity recognition, and question-answering models on the NLP library for Apache Spark.
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Hendra Suryanto (Rich Data Corporation )
Hendra Suryanto shares a case study from a Canadian financial lender that his company helped transition from manual to automated credit decisioning, using gradient boosting machine and deep learning to build the model. In addition to modeling techniques, Hendra highlights the role feature engineering plays in improving model performance.
英文讲话 (Presented in English)
Mark Hammond (Bonsai)
Mark Hammond explores a wide breadth of real-world applications of deep reinforcement learning, including robotics, manufacturing, energy, and supply chain. Mark also shares best practices and tips for building and deploying these systems, highlighting the unique requirements and challenges of industrial AI applications.
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Yufeng Guo (Google)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
Yufeng Guo walks you through training a machine learning system using popular open source library TensorFlow, starting from conceptual overviews and building all the way up to complex classifiers. Along the way, you'll gain insight into deep learning and how it can apply to complex problems in science and industry.
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
David Talby (Pacific AI)
Natural language processing is a key component in many data science systems that must understand or reason about text. David Talby offers an overview of the NLP library for Apache Spark, which natively extends Spark ML to provide open source, fully distributed, and optimized versions of state-of-the-art NLP algorithms, covering the library's design and sharing working code samples in PySpark.
企业人工智能 (AI in the Enterprise), 英文讲话 (Presented in English)
Shyam Sundar (Anodot)
Shyam Sundar explains how to use unsupervised machine learning to keep websites and mobile apps running smoothly under the stress of massive numbers such as those seen on Singles Day. With this method, pricing errors, conversion problems, and business opportunities can be caught early and resolved, protecting companies against revenue loss and brand damage.
实施人工智能 (Implementing AI)
Bo Yu (PerceptIn)
得益于人工智能和机器人技术的快速发展,无人驾驶技术逐渐成熟,预计将会孕育出一个万亿规模的市场,并深刻地改变人们的交通出行方式。我们认为低速限制性的园区将会首先大规模部署无人驾驶技术,首先因为限制性园区对无人驾驶应用的需求巨大,其次由于驾驶环境简单限制性园区容易实现无人驾驶,第三从成本角度考虑,大规模部署无人驾驶方案成本需要在万元美金以内。所以,这里我们将主要探讨适用于限制性园区的低成本无人驾驶解决方案。
企业人工智能 (AI in the Enterprise), 实施人工智能 (Implementing AI), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Emmanuel Ameisen (Insight Data Science), Jeremy Karnowski (Insight Data Science)
Emmanuel Ameisen and Jeremy Karnowski share a guide for moving your company toward deep learning using a collection of NLP best practices gathered from conversations with 75+ teams from Google, Facebook, Amazon, Twitter, Salesforce, Airbnb, Capital One, Bloomberg, and others.
模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Ruiwen Zhang (SAS Institute)
Drawing on several real-world cases, Ruiwen Zhang demonstrates how to visualize the structure of a probabilistic model and provide better insights into the model properties, which can be further used to design and motivate new models, and how to reduce the computational complexity required to perform inference and learning in sophisticated models using graphical models.
实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Reza Zadeh (Matroid | Stanford)
Reza Zadeh offers an overview of Matroid’s Kubernetes deployment, which provides customized computer vision and stream monitoring to a large number of users, and demonstrates how to customize computer vision neural network models in the browser. Along the way, Reza explains how Matroid builds, trains, and visualizes TensorFlow models, which are provided at scale to monitor video streams.
实施人工智能 (Implementing AI)
Xiatian Zhang (TalkingData)
大数据直接推动了人工智能的发展,但如何有效管理和利用大数据也一直是非常有挑战的问题。梳理数据,整理数据,利用数据都非常依赖于数据工程师,数据分析师和数据科学家的个人能力,经验,以及责任心。基于数据创造和发展智能的一大瓶颈就在于这个过程非常的依赖于人。为了提高效率,降低基于数据的智能的成本,扩大其应用范围,我们必须利用智能技术来处理和利用大数据,尽量减少对人的依赖。
实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Nishant Sahay (Wipro Limited)
Deep learning with ConvNet in particular has emerged as a promising tool in medical research labs and diagnostic centers to help analyze images and scans, and systems are now surpassing human capability for manual inspection. Nishant Sahay explains how to apply deep learning to analyze high-end microscope images and X-ray scans to provide accurate diagnosis.
实施人工智能 (Implementing AI)
徐晓 (阿里巴巴)
随着深度学习的发展,其在推荐领域的可能性也被不断拓展,越来越多的基于深度学习的推荐算法在学术论文中被提出,比如:Google提出的Wide&Deep网络结构。 目前,很多大型推荐系统均构建在Hadoop生态上,而主流的深度学习工具(如:TensorFlow/Caffe/Torch)则更适合于gpu集群。因此,运行在Spark环境上的BigDL是非常合适于推荐系统的深度学习解决方案。 本议题将通过案例的形式,分享使用Spark与BigDL构建深度神经网络来优化现有推荐系统的经验。本议题的主要关注点是:如何在推荐工程中高效而健壮的实施深度学习,包括:技术选型的思考,实验场景的搭建,神经网络配置脚本的定制,模型数据的IO,自定义神经网络组件的开发等。
与人工智能交互 (Interacting with AI), 实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
李嘉璇 (梅卡曼德)
随着神经网络算法在图像、语音等领域都大幅度超越传统算法,但在应用到实际项目中却面临两个问题:计算量巨大及模型体积过大,不利于移动端和嵌入式的场景;模型内存占用过大,导致功耗和电量消耗过高。因此,如何对神经网络模型进行优化,使尽可能不损失精度的情况下,能减少模型的体积,并且计算量也降低,就是我们将深度学习在更广泛地场景下应用时要解决的问题。本次讲解主要着眼于在安防、工业物联网、智能机器人等设备,需要解决图像、语音场景下深度学习的加速问题,减小模型大小及计算量,构建高性能神经网络模型。
主题演讲
Sherry Moore (Google)
人工智能已经不是未来的科技,它正快速地成为我们日常生活的一部分。在本演讲中,谷歌TensorFlow的领导者Sherry Moore将会介绍机器学习是如何造福世界的,特别是对于科学的发展。她将会讨论她自己的关于学习如何学习(AutoML)的工作以及几个在中国和全世界使用TensorFlow和机器学习的迷人的案例。

实施人工智能 (Implementing AI), 英文讲话 (Presented in English)
Kaz Sato (Google)
The tensor processing unit (TPU) is a LSI designed by Google for neural network processing. The TPU features a large-scale systolic array matrix unit that achieves outstanding performance-per-watt ratio. Kazunori Sato explains how a minimalistic design philosophy and a tight focus on neural network inference use cases enables the high-performance neural network accelerator chip.
企业人工智能 (AI in the Enterprise), 英文讲话 (Presented in English)
The next frontier in AI is transfer learning, which enables computers to apply what they’ve learned in one scenario to new situations, making AI-based systems far more powerful, reusable, and flexible. But is it ready for enterprise deployment, and if so, how can it be applied to solve business problems? Join Catherine Havasi to find out.
企业人工智能 (AI in the Enterprise), 模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Reza Zadeh (Matroid | Stanford)
Reza Zadeh details three challenges on the way to building cutting-edge ML products, with a focus on computer vision, offering examples, recommendations, and lessons learned.
模型与方法 (Models and Methods), 英文讲话 (Presented in English)
Zhefu Shi (University of Missouri)
It is critical to analyze the business impact on finance market from worldwide events. Zhefu Shi explains how to use AI to analyze the impact of financial news, using a financial data pipeline. Zhefu outlines how to extract financial entity information and use it to analyze business impact. All of the components use AI to enhance functionality.
与人工智能交互 (Interacting with AI)
力周 (Microsoft China)
Since its first release in May of 2014, more than 100 million users in China, Japan, and the US have interacted with renowned AI product Xiaoice (小冰), which builds human-like conversation. Li Zhou shares key lessons learned from the past four years and explains how to use them to build a better chatbot experience.
与人工智能交互 (Interacting with AI), 实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Mingxi Wu (TigerGraph), Yu Xu (TigerGraph)
为了让机器像人一样思考,一个成功的人工智能应用程序的关键部分必须由强大的数据管理软件支持。在这次演讲中,我们将讨论人工智能数据管理的需求,并指出图模型的独特优势。我们将深入讨论几个现实生活中部署的,且将它们的成功归因于图模型的人工智能应用程序。
主题演讲
Haifeng Wang (百度)
敬请期待更多细节。
与人工智能交互 (Interacting with AI), 实施人工智能 (Implementing AI)
黄铃 (慧安金科(北京)科技有限公司)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
您想了解金融企业是怎样利用大数据和人工智能技术来画像个人行为并检测欺诈用户的吗?互联网金融幕后的量化分析流程是怎么杨的?个人信用是怎样通过大数据被量化的?在实践过程中,机器学习算法的应用存在着哪些需要关注的方面?怎样通过图谱分析来融合多维数据,为我们区分正常用户和欺诈用户? 这套辅导课基于清华大学交叉信息研究院2017年春天新开设的一门"量化金融信用与风控分析”研究生课。其中会用LendingClub的真实借贷数据做为案例,解说一些具体模型的实现。
实施人工智能 (Implementing AI)
Zhong Wu (DataVisor)
随着互联网不断发展,面向用户的线上网站服务也进入极速发展期,吸引了大量的用户,整个互联网进入“十亿用户时代”。一些有组织的欺诈团伙利用这个特点,大量创建虚假账户或盗取正常用户账户,以此潜伏在大量正常用户中,在银行、网站和手机应用软件上实施欺诈。由于规则引擎和传统机器学习模型需要经常更新、维护,而且只有在损失发生后才会生成相应反应机制,因此反欺诈团队很难领先一步走在欺诈者前面。人工智能的发展,给整个反欺诈领域带来新的机会。
实施人工智能 (Implementing AI)
焦加麟 (Uber Technologies Inc)
在无人车科学家和工程师们孜孜不倦的实践和思辨中,高精地图(High Definition Map)事实上已经成为现今无人车技术生态系统中的不可缺少的基础设施之一。同样是对现实世界道路网络以及周边环境的建模,比起一般的电子地图,高精地图必须精确到厘米级,同时需要更频繁的更新以保证其正确性。如此高度的精确性和频繁更新的要求,给高精地图的制作带来来巨大的挑战,其中包括专用软硬件的设计和研发、成千上万的城市的天文数字级别的数据的收集、处理、存储和信息化、语义化等等。这一切,使得高精地图的制作成本非常昂贵,需要耗费大量的时间和人力。利用人工智能提高自动化的程度,是降低成本、加快其制作过程的必须的手段。本议题将会深入浅出的介绍各种人工智能技术在高精地图的制作中的各个环节中的应用,以科普大众并唤起专业人士对人工智能在无人车高精地图制作中的应用的兴趣和重视。
实施人工智能 (Implementing AI)
孙玄 (转转公司)
转转的推荐系统从0开始打造,针对业务的不同阶段,一步步发展演进。在发展的过程中经历了全局无个性化推荐阶段、个性化离线推荐阶段、个性化实时推荐阶段、机器学习排序推荐阶段等。 本文会详细讲解不同发展阶段的原因、架构&算法的演进,让同学们对二手交易平台的智能推荐系统能够深刻认识。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
张华 (华为技术有限公司)
(1)阐述下华为是怎么定义与认识人工智能这座山峰的 (2)华为的人工智能平台逻辑架构 (3)华为的这座人工智能山峰,在自然语言处理与机器学习中的技术栈 (4)在NLP+ML上的应用探索 (5)构建细而窄领域的知识图谱的探索及应用
实施人工智能 (Implementing AI)
jinghua hao (美团点评)
近两年外卖行业发展迅速,美团外卖每日超过1600万订单,线下有50万名骑手每天奔波在大街小巷进行配送,是全球最大的外卖平台。如何使数据巨大的骑手配送得更有效率,减少空驶?如何让用户更早地享受到美食,减少超时率?这是一个强随机环境下的大规模复杂优化问题。本次分享将介绍美团配送在运用大数据、机器学习和运筹优化技术解决即时配送业务难题、利用 AI 技术来取代人工上的若干进展和探索,帮助大家了解这一技术领域的进展和挑战。
主题演讲
Ben Lorica (O'Reilly Media), Jason (Jinquan) Dai (Intel), Roger Chen (.)
Program chairs Ben Lorica, Jason Dai, and Roger Chen open the second day of keynotes.
主题演讲
Ben Lorica (O'Reilly Media), Roger Chen (.), Jason (Jinquan) Dai (Intel)
大会日程主席 Ben Lorica、Roger Chen 与 Jason Dai致辞开始第一天主题演讲。
模型与方法 (Models and Methods)
Sherry Moore (Google)
TensorFlow可以让你进行高速运算,很多时候是在机器学习的情景下。 Sherry Moore将会介绍TensorFlow的最新进展,包括TensorFlow立刻执行机制和TensorFlow Lite。她还会分享一些最佳实践,并将演示机器学习的一些有用的应用。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Zhichao Li (Intel)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
从这个教学课程里,学员将会学到如何应用深度学习(最先进的机器学习技术)到他们的Apache Spark驱动的大数据工作任务里
实施人工智能 (Implementing AI)
Yong Gang Hu (IBM), Junfeng Liu (IBM), Feng Kuan (IBM Canada)
深度学习技术是从海量数据集中构建人工智能的关键技术。将Apache Spark与诸如Caffe, MxNet等深度学习框架的集成之后,可以使得后者的学习阶段能够大规模并行化,但在企业部署中会面临很多问题。我们将会分享我们在使用Apache Spark进行深度学习,特别是使用GPU的深度学习的方法以及相应的认知计算实际案例。
实施人工智能 (Implementing AI)
Xianyan Jia (Intel)
BigDL(基于Apache Spark的大数据分布式的深度学习框架)为大规模图像处理提供了丰富的端到端支持。我们将介绍如何使用BigDL搭建灵活性和高可扩展性的端到端深度学习应用程序。我们还将分享我们在京东构建大规模图像特征提取流水线的经验。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Xiaolei Xu (上海新智新氦数据科技有限公司)
目前单机多卡训练是深度学习的标配,但是单机的GPU数目总有上限,因此如何通过多机多卡进行高效的分布式训练就尤其重要。比如,如何将简单的单机程序快速部署到多机并得到相应的加速比,如何使得对GPU的调度与大数据处理平台无缝对接,并使GPU成为平台上按需调度、动态扩容的资源,这些问题的解决对算法迭代优化起到关键作用。 本次talk会详细介绍如何基于Kubernetes和Docker构建TensorFlow的微服务化应用,具体从以下几个方面展开:从少量样本数据的单机快速原型设计验证,无缝切换到大量全数据的多机多卡分布式训练过程;一键启动分布式训练,即基于新氦定制的深度学习云平台,用户无需关注分布式细节,可直接通过可视化web界面进行分布式参数配置和训练代码提交,并可实时可视化监控模型训练收敛性、系统资源消耗和模型输出日志等;模型训练结束后可实时serving将模型快速部署到生产环境。
实施人工智能 (Implementing AI)
韩建军 (华中科技大学计算机科学与技术学院)
嵌入式AI与云端AI的协同融合已成为当今人工智能计算系统的主流方式。首先介绍嵌入式AI的应用范围、特点及其发展趋势。面向异构多核+特定加速器的嵌入式计算系统,基于资源共享的多核体系结构,结合无人驾驶、机器人等AI领域的混合关键实时系统,针对制约实时应用效率提升的关键因素,从实时应用的调度算法、调度策略及Linux操作系统实现等方面,汇报当前的研究进展。侧重多核系统中资源竞争限制下的实时可调度理论、划分调度算法、节能调度机制、操纵系统实现等相关内容,介绍目前的高效调度策略及技术实现方案,用以提高嵌入式智能系统的资源利用率、并行效能及能量效率。 面向嵌入式AI系统的发展趋势,从主流的计算平台体系结构的特征分析出发,提出当前实时调度理论及应用实现中尚存的关键问题,共同探讨可行解决方案及技术手段,为奠定嵌入式AI系统中实时应用的理论及实践的基础提供有益思路。
实施人工智能 (Implementing AI)
Zhenxiao Luo (Uber)
优步应用大数据技术和机器学习技术为客户寻找最舒适的出行地点,预测最佳的航行路线,从而更好的服务客户需求。在这个讲座中,我们将讨论优步如何建立起大数据系统,和机器学习系统,并逐渐将两个系统统一起来。我们会重点讨论优步大数据的缓存策略,以及如何有效的应用缓存来支持大规模的机器学习。
模型与方法 (Models and Methods)
Tie-Yan Liu (微软亚洲研究院微软亚洲研究院 (Microsoft Research Asia))
以深度学习为代表的人工智能技术通常需要大量的有标签训练数据,这对于很多应用领域而言并非易事。为了解决这个挑战,我们利用人工智能的对称之美——很多人工智能任务天然就是双向的,比如中到英翻译 vs.英到中翻译,图像分类 vs. 图像生成,语音识别 vs. 语音合成——来为机器学习建立闭环、生成有效的反馈信号,从而在缺乏有标签数据的情况下也能实现高效学习。我们将这种新型的学习方法称之为“对偶学习”。对偶学习已经被成功应用到诸多领域,取得了非同凡响的效果。本报告中,我们将针对对偶学习的数学模型、优化算法、概率解释、实验结果,收敛性分析等进行详细讨论,展示对偶学习的魅力,并对它在人工智能领域的更广泛应用进行展望。对偶学习有关的研究成果已发表在NIPS、ICML、IJCAI、AAAI等人工智能领域最顶尖的国际会议之上。
与人工智能交互 (Interacting with AI)
王刚 (小米公司)
本次讲演将分享小米语音交互在产品和技术方面的最新进展和面临的一些难题,以及对未来语音技术发展的展望。
模型与方法 (Models and Methods)
Baining Guo (微软亚洲研究院 (Microsoft Research Asia))
关于微软亚洲研究院通过人工智能技术进行图像合成的最新研究概述。从把普通照片变成毕加索风格的绘画,到生成莱昂纳多·迪卡普里奥(Leonardo DiCaprio)的新图像,我们展示了深度学习所带来的新的可能性。
主题演讲
恭请静候精彩主题演讲 (Keynote to come)
主题演讲
恭请静候精彩主题演讲 (Keynotes to come)
主题演讲
恭请静候精彩主题演讲 (Keynotes to come)
主题演讲
恭请静候精彩主题演讲 (Keynotes to come)
主题演讲
恭请静候精彩主题演讲 (Keynotes to come)
实施人工智能 (Implementing AI)
Tony Xing (Microsoft), Bixiong Xu (Microsoft)
在这个议题中,我们会介绍Kensho, 一个基于AI的商业指标监控与诊断工具, 我们通过将AI元素注入这个BI工具,从而构建来服务不同的微软团队的历程。我们的从中学到的经验教训,技术的选择和烟花,架构,算法等等。通过工程+数据科学解决了一个工业界的一个通用需求。
实施人工智能 (Implementing AI)
Weiyue Wu (University of Oxford)
无人驾驶技术是多个技术的集成, 一个无人驾驶系统包含了多个传感器,包括长距雷达、激光雷达、短距雷达、车载摄像头、超声波、 GPS、 陀螺仪等。每个传感器在运行时都不断产生数据,而且系统对每个传感器产生的数据都有很强的实时处理要求。 无人驾驶序幕刚启,其中有着千千万万的机会亟待发掘。在此背景之下,过去的几年中,自动驾驶产业化在多个方面取得了很大进步,其中合作共享已成为共识,产业链不断整合,业界企业相继开展合作,传感器价格将不断下降,预计在2020年,将有真正意义上的无人车面世。 我们可以预测一个不远的未来,届时所有行驶的车辆都是无人驾驶车,我们将迎来一个更加安全、更加清洁环保的世界。 本次演讲,我们将解析无人驾驶技术产业链条,分析无人驾驶发展和即将面临的问题。最后,将给出无人驾驶发展的路线图,揭示在 未来二十年内无人驾驶的走势。
主题演讲
Hsiao-Wuen Hon (微软亚洲研究院 (Microsoft Research Asia))
人工智能已经引发了众多关注和讨论,而关于人类智能和人工智能孰优孰劣的辩论也不断升温。在这个主题演讲中,洪小文博士将介绍人工智能(AI)以及人类智能(HI)的历史。从历史的维度,以深刻的洞察,阐述AI和HI是如何彼此交织并共同进化的,并预示AI和HI可能的未来。
人工智能对商业及社会的影响 (Impact of AI on Business and Society), 企业人工智能 (AI in the Enterprise)
Enhao Gong (Stanford University | Subtle Medical), Greg Zaharchuk (Stanford University)
人工智能与深度学习正在快速改变医疗产业发展。本讲座将介绍斯坦福的深度学习领域学者与斯坦福医院医生、教授合作研发的技术,以及如何快速地优化临床医学影像的使用。人工智能技术让医学影像的采集与处理更加快速、高效、便捷与智能。 具体技术应用包括: 1. 如何通过人工智能优化临床影像流程,优化诊断治疗规划 2. 如何通过人工智能与深度学习预测神经疾病病人的预后和疾病发展 3. 如何通过人工智能与深度学习技术加速神经影像流程 4. 如何通过人工智能与深度学习技术显著减少放射性与显影剂使用
与人工智能交互 (Interacting with AI), 实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
李苍柏 (中国地质科学院矿产资源研究所)
众所周知,现在的深度学习已经在各个行业开始了应用。但是深度学习如何与地质行业相结合,这还是一个新兴的话题,国外目前,已经开始用深度学习来处理实验室地震数据,用以提高地震预测的时间;国内也已经有很多人用卷积神经网络开始对岩石图像数据进行处理,这次议题我做的报告是,在介绍前人工作的基础上,介绍一下自己在地质上的应用!
模型与方法 (Models and Methods)
xiahoao wang (TalkingData)
目前,深度学习在移动端的应用越来越受到重视,从芯片制造商到手机厂商,一直到应用开发者,都在为在智能手机上运行深度学习模型做出了很多努,开发者一方面很难找到针对移动端优化过的解决特定应用场景的模型,一方面不知道应该如何选择这些框架,TalkingData 推出的 Android Deep Learning Framework 就为了解决这些问题。我们提供了针对移动平台的各种类型的模型,以及它们在主流机型行的实测 Benchmark,另外也提供了利用这些预训练模型和自己的数据集进行再训练的服务器端脚本和自动化工具,最后就是封装了一个上层 DL API,让开发者可以支持各种移动端深度学习框架,并为这些模型的使用提供统计分析服务。
实施人工智能 (Implementing AI)
Hui Lin (Liulishuo)
教育的个性化和高效率离不开智能化。本次演讲将结合“流利说”在过去5年的实践,从问题定义、数据获取、算法设计、模型优化等方面介绍如何将深度学习运用于语音识别、知识跟踪、以及自然语言处理等领域。实验结果显示,搭载这些智能技术的学习产品能将学习效率提升三倍。
Chia Wei Lim (Skymind), Wang Feng (Skymind)
培训 请注意: 您的注册套餐必须包括培训课程
在分析时间序列或者序列数据方面循环神经网络(RNN)已经被证明是非常有效的,那么在实际的案例中如何才能把循环神经网络(RNN)的优点发挥出来呐?这里将演示如何用deeplearning4j框架构建循环神经网络(RNN)来解决时间序列的问题。
Michael Li (The Data Incubator), Season Yang (The Data Incubator)
培训 请注意: 您的注册套餐必须包括培训课程
TensorFlow是一个流行的深度学习的工具。我们会介绍TensorFlow的流程图、学习使用它的Python API,并展示它的用处。我们会从简单的机器学习算法开始,然后实现神经网络。我们还会讨论一些真实的深度学习的应用,包括机器视觉、文本处理和生成型网络。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Bichen Wu (UC Berkeley)
深度学习近年来的成功极大地促进了自动驾驶技术的快速发展。但不少问题依然存在:1)深度学习模型需要大量的训练数据 2)即便是深度学习模型也很难达到100%准确率 3) 深度学习模型的计算复杂度太高,超出了车载计算机的处理能力。这个讲座将会关注以上几个问题。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Erran Li (Uber ATG)
教学辅导课 请注意:要参加此课程你的注册必须包含周三的教学辅导课
尽管最近人工智能等领域取得了很多的进展,但自动驾驶里的主要问题(不管是基础研究还是工程应用上的挑战)离完全被解决还有很大的距离。Erran Li将会探索自动驾驶所用的机器学习的基础,并讨论目前相关工作的进展。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Erran Li (Uber ATG)
深度增强学习已经让人工智能体在很多挑战性的领域可以取得超越人类的表现,例如玩Atari的游戏以及下围棋。这一方法还具有能显著地推进自动驾驶的潜力。Erran Li将会讨论近期在模仿学习方面(例如infoGAIL)、策略梯度法和层次增强学习(例如option-critic架构)等方面的进步,以及它们在自动驾驶方面的应用。Erran接着还会介绍在这个领域需要关注的剩余的挑战。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Li Li (ESRI)
制图学是一个历史悠久的学科。古希腊地理学家C.托勒密的《地理学指南》就是一部地图制图学著作。托勒密认为地理学就是“以线画形式描绘地球上所有迄今已知的部分及其附属的东西”。几百年以来,地图学领域都没有重大突破。 深度学习作为一个新的技术已经渗透到了各个行业。带来了各种各种的技术革新。本讲座就是探讨如何用深度学习来给地图换装。然后展示一些用深度学习技术给地图换装的结果。并讨论,深度学习在制图领域的应用。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
杨军 (阿里巴巴)
本议题会分享我们在典型互联网业务场景(图像、文本处理等)下的深度学习优化实践经验,包括离线训练和在线Inference,并会从系统与算法相结合的角度进行相关经验的阐述和介绍。
主题演讲
结束致辞 (Closing Remarks)
主题演讲
结束致辞 (Closing Remarks)
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Liyun Li (百度美国硅谷研发中心)
尽管人工智能技术已经在诸如计算机视觉和自然语言处理等领域获得了巨大的成功,如何在自动驾驶系统中有效地利用AI的能力仍然是一个很大的挑战。我们将以"Apollo"这一百度的开源无人驾驶平台系统做为基准和样例, 深入讨论并且分享在搭建智能的无人驾驶系统各个方面利用AI技术的实践和经验。通过讲解Apollo无人驾驶系统背后的设计理念以及各个功能模块,我们将分享并展示AI技术在Apollo无人驾驶系统中各方面的应用, 包括环境感知,行为预测,行为决策,以及控制规划等。同时我们将结合Apollo系统中的端到端学习实践,探讨AI技术在未来无人驾驶系统中更好的应用场景。
实施人工智能 (Implementing AI)
李忠伟 (深圳普思英察科技有限公司(PerceptIn China))
本演讲主要阐述视觉智能(Visual Intelligence)的定义,传感器分类和介绍,流行算法和介绍,应用场景以及创新点。 介绍视觉传感器的发展历史以及分类,包括被动光摄像头和主动光摄像头以及其他衍生传感器 介绍基于视觉的算法:深度学习算法和SLAM算法 介绍视觉智能在机器人行业中的应用,包括家庭机器人,服务类机器人,无人驾驶汽车。 最后介绍多传感器融合的解决方案在机器人行业的应用以及必要性。
实施人工智能 (Implementing AI), 模型与方法 (Models and Methods)
Ming Zhou (微软亚洲研究院 (Microsoft Research Asia))
创作诗歌、音乐是人类独具的能力。然而,随着深度神经网络和大数据的发展,计算机已经逐步具备了创作诗歌和音乐的能力。我们致力于把AI融入到创作过程中,并且帮助普通实现创作梦想。为此,我们长期以来进行了对联、诗词的研究。2005年就开发了中文对联系统(http://duilian.msra.cn).。以后又陆续开发了格律诗写作,猜字谜和出字谜。2016年开发了小冰写诗。目前我们正在探索先进的神经网络和大数据来模仿人类的音乐创作过程。我们采用了融入上下文的编码-解码方法来产生诗歌、歌词和谱曲。取得了富有希望的成果。我们的电脑音乐创作已经在CCTV的机智过人节目播出。获得好评,由电脑写出歌词,然后配上曲谱,然后通过声音合成,唱出歌曲。
实施人工智能 (Implementing AI)
Shaoshan Liu (PerceptIn)
通过深度学习技术,物联网(IoT)设备能够得以解析非结构化的多媒体数据,智能地响应用户和环境事件,但是却伴随着苛刻的性能和功耗要求。我们探讨了两种方式以便将深度学习和低功耗的物联网设备成功整合。